Biblio
“Lethal dysregulation of energy metabolism during embryonic vitamin E deficiency.”, Free Radic Biol Med, vol. 104, pp. 324-332, 2017.
, “Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.”, Redox Biol, vol. 8, pp. 165-74, 2016.
, “Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets.”, Free Radic Biol Med, vol. 110, pp. 250-260, 2017.
, “Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism.”, Free Radic Biol Med, vol. 112, pp. 308-317, 2017.
, “Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish.”, Eur J Neurosci, vol. 40, no. 1, pp. 2225-40, 2014.
, “Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality.”, J Nutr Biochem, vol. 23, no. 5, pp. 478-86, 2012.
, “The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome.”, Comp Biochem Physiol Part D Genomics Proteomics, vol. 10, pp. 22-9, 2014.
, “The α-tocopherol transfer protein is essential for vertebrate embryogenesis.”, PLoS One, vol. 7, no. 10, p. e47402, 2012.
, “Proteome-driven elucidation of adaptive responses to combined vitamin E and C deficiency in zebrafish.”, J Proteome Res, vol. 13, no. 3, pp. 1647-56, 2014.
, “Advanced morphological - behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants.”, Toxicol Sci, vol. 145, no. 1, pp. 177-95, 2015.
, “The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor.”, PLoS One, vol. 5, no. 10, 2010.
, “Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4-dinitroanisole.”, Environ Toxicol Chem, vol. 35, no. 11, pp. 2774-2781, 2016.
, “Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay.”, Chemosphere, vol. 148, pp. 361-8, 2016.
, “A retrospective study of the prevalence and classification of intestinal neoplasia in zebrafish (Danio rerio).”, Zebrafish, vol. 10, no. 2, pp. 228-36, 2013.
, “Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1.”, Mol Pharmacol, vol. 69, no. 3, pp. 776-87, 2006.
, “Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles.”, Environ Sci Technol, vol. 50, no. 7, pp. 4018-26, 2016.
, “High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes.”, Arch Toxicol, vol. 90, no. 6, pp. 1459-70, 2016.
, “Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics.”, J Biol Chem, vol. 279, no. 37, pp. 38303-12, 2004.
, “Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants.”, Neurotoxicol Teratol, vol. 28, no. 4, pp. 497-508, 2006.
, “Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish.”, Neurotoxicol Teratol, vol. 26, no. 6, pp. 769-81, 2004.
, “Zebrafish as a Model for Developmental Biology and Toxicology”, in Handbook of Developmental Neurotoxicology (Second Edition)Handbook of Developmental Neurotoxicology (Second Edition), 2018.
, “Development of a high-throughput in vivo screening platform for particulate matter exposures.”, Environ Pollut, vol. 235, pp. 993-1005, 2018.
, “Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish.”, Reprod Toxicol, vol. 38, pp. 89-101, 2013.
, “Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish.”, Toxicology, vol. 291, no. 1-3, pp. 83-92, 2012.
, “Formation of Developmentally Toxic Phenanthrene Metabolite Mixtures by Mycobacterium sp. ELW1.”, Environ Sci Technol, vol. 51, no. 15, pp. 8569-8578, 2017.
,