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a b s t r a c t 

Postfire restoration of sagebrush steppe is limited by poor sagebrush establishment from seed. Trans- 

planting may improve seedling establishment, but it requires more labor and expense. Given variable

transplant survival in big sagebrush ( Artemisia tridentata Nutt.), establishing links between restoration

practices and survival related to exposure to adverse weather, via plant response to stress, could signifi- 

cantly improve transplant efficacy. We tested how planting season and transplant age (size), two restora- 

tion practices likely to affect seedling survival across a range of environmental conditions, related to

transplant survival and stomatal conductance, an indicator of seedling ecophysiological performance. We

found low mean stomatal conductance during key periods in spring and early summer was associated

with subsequent growing season mortality across all size-classes. Overall, these findings suggest man- 

agers should consider the importance of plant performance during key stressful periods in evaluating

transplant survival related to restoration methods.

Published by Elsevier Inc. on behalf of The Society for Range Management.
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ntroduction 

Sagebrush steppe is imperiled by invasive non-native annual 

rasses that accelerate and amplify interannual fire regimes ( Knick

t al. 2003 ). Largescale seedings of the dominant shrub, big sage-

rush ( Artemisia tridentata Nutt.), are often unsuccessful ( Knutson

t al. 2014 ). Transplants are more reliable yet expensive, with high

ariation in survival ( Dettweiler-Robinson et al. 2013 ; Pyke et al.

020 ). Big sagebrush transplant survival is associated with site 

haracteristics and weather ( McAdoo et al. 2013 ; Davidson et al.

019 ; Pyke et al. 2020 ), localized adaptation ( Chaney et al. 2017 ),

nd planting methods ( Minnick and Alward 2012 ; Dettweiler-

obinson et al. 2013 ). Planting season may particularly affect ex-

osure to stressful environmental conditions. For example, fall- 

lanted transplants can have higher first-year survival than spring 
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lantings ( Clements and Harmon 2019 ) due to greater tolerance for

oil drying during the transition to summer drought ( Miller and

hultz 1987 ; Miller 1988 ; Romo and Haferkamp 1989 ). 

While considerable attention has been given to environmental 

ffects on seedling and adult big sagebrush ecophysiology ( Smith 

t al. 1997 ; DiCristina and Germino 20 06 ; Loik 20 07 ; Reinhardt

t al. 2019 ), studies linking big sagebrush transplant survivorship 

nd mortality with indicators of ecophysiological performance are 

imited. Physiological indicators, like stomatal conductance to wa- 

er vapor (g s ), reflect the trade-off and optimal regulation between 

hotosynthesis (open stomata) and water conservation (closed 

tomata) that allow the plant to better maintain water balance and

rowth in response to environmental stressors ( Smith et al. 1997 ).

uch data may offer insight into how management factors associ- 

ted with survival, such as planting season or size, are associated

ith environmental conditions. 

To address this, we coupled survivorship observations of fall- 

nd spring-planted Wyoming big sagebrush ( Artemisia triden- 

ata Nutt. ssp. wyomingensis Beetle & Young) cohorts including 

eedlings of various ages (sizes) before planting with measure- 

ents of g s over the growing season to determine if variation in g s 
as associated with seedling mortality and whether this effect var- 

ed by cohort or size-class. We hypothesized that lower springtime 

 s during the transition from spring to summer drought would 

https://doi.org/10.1016/j.rama.2021.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/rama
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rama.2021.09.008&domain=pdf
mailto:stella.copeland@usda.gov
https://doi.org/10.1016/j.rama.2021.09.008


S.M. Copeland, E.P. Hamerlynck and C.M. Holfus et al. / Rangeland Ecology & Management 80 (2022) 26–30 27 

b  

s  

r  

c

M

S

 

i  

4  

p  

i  

a  

b  

1  

s  

g  

f  

c  

d  

c  

r  

b  

i  

m  

b  

S

 

c  

t  

t  

k  

m  

m  

S

 

m  

(  

d  

w  

m  

h  

N  

w  

f  

o  

(  

S  

s  

s  

f  

N

A

 

c  

c  

s  

t  

i  

B  

m  

o  

m  

s  

i  

o  

i  

e  

W  

s  

q  

a  

l  

g  

f  

y

R

 

d  

m  

t  

m  

1  

b  

e  

s  

t  

o  

c  

a

p  

t  

e  

d  

t  

r  

m

(  

M

2

 

m  

d  

1  

h  

s  

F  

m  

(  

d  

<  

t  

F

 

a  

p  

v  

o  

t  

w  

c  

c  
e associated with mortality and that this trend would be more

trongly expressed in spring-planted seedlings that had not expe-

ienced as great a range of environmental variation as fall-planted

ounterparts. 

ethods 

ite and experimental setup 

The study was performed on the Northern Great Basin Exper-

mental Range in southeastern Oregon (119 ̊42 ′ W, 43 ̊29 ′ N) at 1

00 m a.s.l. in a sandy loam soil. Wyoming big sagebrush trans-

lants were grown in a climate-controlled grow-room under high-

ntensity lights (seed source and procedure details: Appendix S1,

vailable online at: 10.1016/j.rama.2021.09.008 ). Seedling age ranges

etween 44 and 170 d were created by seeding every 14 d for

26 d to create 10 age groups (first seeding dates: fall planting

eason, May 1, 2019, spring, October 2, 2019). We bulked the 10

roups into 5 size-classes (28-d age range) to increase sample size

or analysis, resulting in 400 total transplants and N = 40 per size-

lass and planting season. The final size-classes were class 1, 44–58

; class 2, 72–86 d; class 3, 100–114 d; class 4, 128–142 d; and

lass 5, 156–170 d. Seedlings were transplanted from the grow-

oom to a fenced (rabbit-exclusion) 25 × 25 m level area on Octo-

er 18, 2019 and March 20, 2020 for fall and spring season plant-

ngs, respectively. Before planting, competing vegetation was re-

oved with burning (September 26, 2019) and a preemergent her-

icide treatment (October 15, 2019, imazapic, details: see Appendix

1) unlikely to harm sagebrush seedlings ( Owen et al. 2011 ). 

Mean daily volumetric soil moisture and temperature were cal-

ulated from hourly measurements at 5, 10, and 15 cm depths from

wo locations within the planting area and mean daily air tempera-

ure, relative humidity, and total precipitation were measured ≈3.5

m from the site at similar elevation and flat topography for the

ain monitoring period (October 2019–September 2020, US Cli-

ate Reference Network, Diamond et al. 2013 ; Palecki et al. 2013 ).

urvival and physiology measurements 

Stomatal conductance to water vapor (g s , mmol m 

–2 s –1 ) was

easured on the abaxial surface of healthy, fully expanded leaves

larger than the porometer aperture) at midday (10 a.m.–1:30 p.m.)

uring dry high-light weather conditions (sunny or partly sunny

ith high clouds, SC-1 leaf porometer, Meter Group, Inc., Pull-

an, Washington, USA) for half of each size-class and season co-

ort ( N = 20 for all except for fall-planted size-class 4 for which

 = 19; one died by November 2019). We measured g s once before

inter for fall transplants (October 31–November 6, 2019) and for

our growing season periods in 2020: spring (measurement peri-

ds: April 7–8, May 4–5), peak summer (July 7–8), late summer

August 3–4, August 31–September 1), and fall (September 28–29).

eedling survival, based on the presence of green leaves, was as-

essed on conductance measurement dates and on June 15 (peak

ummer) and July 22 (midsummer) in 2020 and March 2, 2021

or all individuals ( N = 40 for size-class and planting season, except

 = 39 for fall size-class 4, see earlier). 

nalysis 

We used a linear model to test for differences in g s by size-

lass in late October to early November after planting for the fall

ohort. We tested the effect of size-class and growing season mea-

urement period (spring, peak summer, late summer, and fall) and

heir interaction on g s with separate linear mixed models by plant-

ng season (random intercept term for individual, package lme4,
ates et al. 2015 ). We tested whether the previous g s measure-

ent during the growing season predicted survival as a function

f planting season and size-class using a Cox proportional hazard

odel that included bivariate interactions among g s , season, and

ize-class and formulated for time dependence for temporal trends

n g s (package survival, Therneau 2021 ). We also tested the effects

f mean spring and peak summer g s (April 7–July 8) and their

nteraction on midsummer survival (July 22) with separate gen-

ralized linear models (binomial distribution) by planting season.

e mean centered g s when included as a predictor variable. Non-

ignificant ( P > 0.05) interactions and variables were removed se-

uentially with model comparison to arrive at final models (pack-

ge car, Fox and Weisberg 2019 ). We calculated pairwise tests with

east square means for differences between combinations of cate-

orical variables and slopes for continuous covariates (Tukey’s tests

or multiple comparisons, package emmeans, Lenth 2020 ). All anal-

ses were conducted in R version 4.0.3 ( R Core Team 2020 ). 

esults 

Daily air temperature averaged 0.3 °C ± 0.3 °C ( ± SE), with 75

 < 0 °C, from the fall planting date until the first spring survival

easurement (October 18, 2019–April 6, 2020), 7.7 °C ± 0.6 °C in

he spring (April 7–May 5, 2020), 13.2 °C ± 0.6 °C in peak sum-

er (May 6–July 9, 2020), 21.0 °C ± 0.4 °C in late summer (July

0–September 1, 2020), and 15.6 °C ± 0.9 °C in the fall (Septem-

er 2–29, 2020) measurement periods. Soil moisture was high-

st in the winter and declined through the 2020 growing sea-

on with punctuated increases associated with discrete precipita-

ion events ( Fig. 1 ). Weather during the study measurement peri-

ds was within 1 standard error of longer-term means (10 yr), ex-

ept for lower precipitation in the spring (Table S1, available online

t: 10.1016/j.rama.2021.09.008 ). 

Stomatal conductance for fall-planted, hereafter “fall,” trans- 

lants did not differ by size-class shortly after transplanting (Oc-

ober 31–November 6, 2019, F value = 0.72, df = 4, P = 0.580). How-

ver, many of the fall plants died by the first spring monitoring

ate (April 2020), particularly in the smallest size-class (60% mor-

ality). Survival after the first growing season (September 2020)

anged from 33% for the fall smallest size-class to 93% for the

edium (class 3) spring-planted, hereafter “spring,” transplants 

class 3, Fig. S1, available online at: 10.1016/j.rama.2021.09.008 ).

ortality over the subsequent fall-winter (September 2020–March 

021) was low (3/400 plants). 

Spring transplant g s significantly varied among growing season

easurement periods ( χ2 = 413.2, df = 3, P < 0.001) but did not

iffer by size-class ( P > 0.10, Fig. 2 , Table S2, available online at

0.1016/j.rama.2021.09.008 ). Specifically, spring transplant g s was

ighest in peak summer and lowest in the spring but did not

ignificantly differ between late summer and fall ( P < 0.001, see

ig. 2 , Table S2). Fall transplant g s varied between growing season

easurement periods ( χ2 = 34.8, df = 3, P < 0.001) and size-class

 χ2 = 9.4, df = 4, P = 0.05, see Fig. 2 ). Fall transplant g s was highest

uring the peak summer period compared with other periods ( P

 0.05) and marginally higher for the smallest compared with the

wo largest size-classes (class 1 vs. 4, P = 0.05, 1 vs. 5, P = 0.08, see

ig. 2 , Table S2). 

Final models for growing season survival included size-class

nd an interactive effect of the previous g s measurement and

lanting season with a slightly greater positive effect of g s on sur-

ival for fall compared with spring transplants (Table S3, available

nline at: 10.1016/j.rama.2021.09.008 ). Average g s pooled across

he spring and peak summer periods was positively associated

ith survival by midsummer (July 22) for both spring (coeffi-

ient = 0.042, χ2 = 41.4, df = 1, P < 0.001) and fall cohorts (coeffi-

ient = 0.026, χ2 = 27.6, df = 1, P < 0.001, Fig. 3 ). Size-class did not

https://doi.org/10.1016/j.rama.2021.09.008
https://doi.org/10.1016/j.rama.2021.09.008
https://doi.org/10.1016/j.rama.2021.09.008
https://doi.org/10.1016/j.rama.2021.09.008
https://doi.org/10.1016/j.rama.2021.09.008
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Fig. 1. Air temperature, precipitation, relative humidity, and volumetric soil moisture between the fall planting (October 18, 2019) and September 29, 2020 with green lines 

for planting dates and red dashed lines for measurement dates. Filled areas represent growing season measurement periods. 
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ave significant main or interactive effects on mean g s in these

odels ( P > 0.10). 

iscussion 

As expected, higher spring-summer g s was associated with sur- 

ival in the spring-fall growing season across all seasonal cohorts 

nd size-classes. Our results highlight the importance of spring and 

arly summer, before the extended summer drought, as the period 

ith the most variation in g s tied to the highest rates of mortality.

verwinter mortality for fall seedlings was high, with the effect 

ependent upon size-class. Specifically, we observed high mortal- 

ty for smaller fall seedlings by the first spring sampling. While our

nalysis did not allow us to pinpoint specific weather conditions 

elated to this pattern, others have also observed high and vari-

ble sagebrush seedling mortality with freezing events ( Brabec et 

l. 2017 ). Overall, we observed limited indications of higher eco-

hysiological performance of fall over spring transplants associ- 

ted with survival during the growing season. Small fall-planted 

eedlings that survived through winter had higher g s and corre- 
ponding low mortality rates than their spring counterparts during 

he growing season, but mortality rates remained higher for larger 

all individuals. While spring-planted transplants had much lower 

 s than fall transplants at the beginning of the growing season, g s 
as similar between both cohorts by the peak summer and fall

eriods. 

Broadly, our results suggest that monitoring physiological activ- 

ty with simple methods in planted seedlings can provide insight 

nto poor performance and associated risk of mortality. Multiple 

tudies have documented seasonal controls on physiological activ- 

ty for this relatively well-studied native species ( Miller and Shultz

987 ; Miller 1988 ), as well as population and subspecies differ-

nces in response to weather conditions, like drought and freez- 

ng ( Kolb and Sperry 1999a , 1999b ; Brabec et al. 2017 ; Lazarus

t al. 2019 ). More sophisticated studies linking physiological per- 

ormance, growth, and survival to management factors could im- 

rove transplant success across the region ( Dettweiler-Robinson et 

l. 2013 ; Pyke et al. 2020 ). 

Although our approach showed stomatal behavior is associ- 

ted with seedling susceptibility to mortality, it does not clarify 



S.M. Copeland, E.P. Hamerlynck and C.M. Holfus et al. / Rangeland Ecology & Management 80 (2022) 26–30 29 

Fig. 2. Big sagebrush transplant stomatal conductance (mean ± SE) by planting season (fall: blue circles, spring: orange triangles), size-class, and growing season measure- 

ment period (spring: April 7–8, May 4–5, peak summer: July 7–8, late summer: August 3–4, August 31–September 1, and fall: September 28–29). 

Fig. 3. Big sagebrush transplant midsummer (July 22) survival (points) and model predictions for each planting season (fitted lines for separate generalized linear models 

[binomial distribution] by season) associated with spring-peak summer (April 7–July 8) stomatal conductance. 
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echanisms underlying seedling death. Reduced stomatal open- 

ng in plants fated to die may have limited carbon uptake needed

o survive into and through summer drought or be at the onset

f widespread xylem cavitation, both of which interactively de- 

ermine whole-plant mortality in woody species ( Hammond and 

dams 2019 ). It is also unclear based on our results how spe-

ific aspects of the grow-out process, such as growth allocation 

n containers before planting, may have reduced soil water uptake 

eeded to meet photosynthetic demand ( Meinzer and Grantz 1990 ;

mith et al. 1997 ). 

mplications 

Our results suggest that leaf physiological activity in the early 

rowing season is key to increasing survival of sagebrush trans- 

lants. This implies that outplanting methods like size-class and 

lanting season are more likely to influence survival if they af-

ect spring ecosphysiological activity. Future research effort s could 

mprove ecophysiological links with survival by identifying critical 

hresholds with frequent conductance measurements and/or larger 

ample sizes and elucidating processes associated with stomatal 

ehavior such as xylem hydraulic function, photosynthetic carbon 

ssimilation, photoprotective mechanisms, and nonstructural car- 

ohydrate dynamics ( Smith et al. 1997 ; Kolb and Sperry 1999a ,

999b ; Reinhardt et al. 2019 ). An ecophysiological approach could

lso help resolve conflicting literature on transplant performance 

ssociated with restoration methods ( Dettweiler-Robinson et al. 

013 ; Clements and Harmon 2019 ; Pyke et al. 2020 ) and potential

elationships with weather conditions or the responses of different 

eed sources to environmental stress ( Brabec et al. 2017 ). These

lant-level ecophysiological responses could increase restoration 

fficiency by suggesting outplanting methods most likely to in- 

rease survival via decreased exposure to adverse weather in key 

ime periods in highly variable sagebrush steppe landscapes. 
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